
Erlang Concepts
Samuel Tesla

samuel.tesla@gmail.com

1

mailto:samuel.tesla@gmail.com
mailto:samuel.tesla@gmail.com

http://www.sics.se/~joe/apachevsyaws.html

YAWS vs. Apache

2

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html

Matching & Variables

3

Matching

•A = 42.

•{A, B} = {42, b}.

•[Head | Tail] = [a, b, A].

•{a, [b, 42]} = {Head, Tail}.

4

Single Assignment

• Once a variable is bound in a scope, it
cannot be rebound.

• This behavior is required for matching to
work right.

• Variables cannot change once bound.

• Much easier to reason about and debug.

5

Function Signatures
•value({tag, Value}) -> Value.

• first([First | _Rest]) -> First.

• div(_X, 0) -> undefined;

div(X, Y) -> X div Y.

• is_even(X) when X div 2 =:= 0 ->

 true;

is_even(_) -> false.

6

Recursion

• In order to make variables “mutable” make
them parameters.

• Recurse with new values.

• Tail-Call Optimization prevents stack
overflow.

• Many algorithms have to be redesigned to
work with tail-recursion.

7

Example

sum(List) -> sum(List, 0).

sum([], Sum) -> Sum;
sum([First | Rest], Sum) ->
 sum(Rest, First + Sum).

8

Higher-Order
Functions

• Functions as first-class values.

• Functions that return other functions, or
take other functions as parameters.

• Functions can capture the state when they
were created to produce closures.

• fun(X,Y) -> X + Y end.

9

Example

sum(List) ->
 lists:foldl(fun(X, Sum) ->
 X + Sum
 end, 0, List).

10

Concurrency &
Distribution

11

Processes

• User-space “green” threads

• VM manages processes across kernel
threads to maximize CPU utilization across
all available cores.

• Because processes are the basic modeling
tool, Erlang programs tend to scale linearly
as cores are added.

12

Processes

• Processes are self-contained.

• Each process has its own stack.

• GC is per-process.

• If a process crashes, it does not affect any
other process.

13

Nodes

• Each OS process running the VM is a node.

• Nodes are completely separate from each
other.

• Nodes can connect to form a cluster.

• Security bewteen nodes is all or nothing.

• Processes can be started on any node from
any other node in a cluster.

14

Messages

• Messages are sent from any process to any
other process in the cluster.

• The VM guarantees that messages will be
delivered in order.

• The VM does not guarantee that messages
will be delivered.

• Pid ! {tag, Value}.

15

Links

• Any two processes can be linked.

• If a process exits with an abnormal status,
all linked processes will exit with the same
status.

• System processes trap exits. Instead of
exiting, they receive a message with the Pid
and exit status of linked processes.

16

Monitors

• A process may request notification when
another process exits without becoming a
system process by monitoring it.

• The monitoring process will receive a
notification if the process exits, the node
that process is running on disconnects, or if
either is already the case when the monitor
is requested.

17

Fault Tolerance &
Reliability

18

Joe’s Rule

“To make something fault tolerant, we need at
least two computers. One computer does the
job, and another computer watches the first

computer and must be ready to take over at a
moment’s notice if the first computer fails.”

– Joe Armstrong, Programming Erlang

19

Supervision Trees

• Worker processes do the real work.

• Supervisor processes monitor workers and
restart them as needed.

• Supervisors can also monitor other
supervisors.

• This sort of structure is called a
supervision tree.

20

Supervision Trees

21

Live Code Reloading

• The VM can reload a module from disk.

• In-progress function calls will complete
using the code that was current when they
started.

• New function calls will use the most
current loaded code.

22

Questions?

23

